

MISSISSIPPI STATE

Blazing New Frontiers in Composite Tooling Using Reactive Additive Manufacturing

Background

Mississippi State University's Advanced Composites Institute (ACI) is an expert in composite design, engineering, fabrication, and testing. The ACI resides in a 50,000 sq. ft. facility with large-scale capabilities, including a 50 ft oven and 40 ft. stitching robot. In partnership with Magnum Venus Products, the ACI has recently procured a unique and innovative large-scale thermoset Reactive Additive Manufacturing (RAM) 3D printer.

The Technology

- 4'x8'x4' print bed.
- Produces "Near net" parts \bullet at a rate of 60 lb/hr.
- No heating for deposition or bed.
- Variable nozzle size.
- Flexibility to change the print bed.

MVP's RAM printer uses thermoset chemistry to cure layers together instead of fusing them together like in conventional thermoplastic printing.

- Resin and initiator are mixed and pumped through the system.
- The pumping system is metered to allow the material to deposit at a constant rate.
- The deposited material remains reactive to allow the next layer to cure.

Wayne Huberty, Ph.D., Hunter Watts

The Materials

 \bullet

Longer open layer time allows for the placement of sensors, plumbing, and core materials without compromising layer adhesion.

Polynt Reactive Deposition Media	General Purpose PRD	Styrene Free PRD EX1630	Low Shrink / CLTE PRD EX1632	Thermally Conductive PRD EX1633	Low Density PRD EX1631	
Flexural Strength (psi)	9,400	8,030	4,437	5,300	7,200	
Flexural Modulus (psi)	635,000	1,079,000	643,000	1,076,000	986,000	
Tensile Strength (psi)	4.600 4.240		2,832	3,400	3,500	
Tensile Modulus (psi)	581,500	1,279,000	720,000	492,000	951,000	
Tensile Elongation (%)	1.0	0.4	1.7 1.3		0.5	
Compressive Strength (psi)	10,100	19,100	5,668	5,668 8,600		
Compressive Modulus (psi)	343,000	1,059,000	317,000	236,000	637,000	
Tg(°C) Tan Delta DMA	A 107 100		169 98		100	
CLTE (0-160°C) (μm/m°C) z = (176)		x = (43) y = (23) z = (249)	x = (8) y = (1) z = (83)	x = (81.5) z = (202)	x = (35) y = (37) z = (166)	

- Typically epoxy or vinyl ester resin.
 - Open layer times of up to 10 days.
 - Low cost.
 - Room temp cure for most applications.
 - Parts can be bonded together after being printed

- conventional AM.
- 80%-99.8% electricity savings.
- be reused and repurposed.

Advanced Composites Institute

Advantages

Coefficient of Thermal Expansion µm/m°C									
	70.0								
						_			
						_			
					35.0	_			
		24.0			00.0	_			
		24.0			_	_			
			1.2	8.0					
'	Â	ALUM	ML.	104	104	1			
		MIN	Ap.	N CIR	DEN	SITY PRD			
			4		PD Y	ITY PP			
				1		0			
rm	oplastic	Metal	Thermose	Т					

• In-plane CTE of metal with the unique advantages of

• Higher isotropic out-of-plane CTE performance.

• RAM requires no heated nozzle or bed, allowing

• Prints can be cured together, which allows parts to be made larger than the print bed volume and for the creation of 90° overhangs without support structures.

Surface can be milled and reprinted, allowing tools to

Applications

- Complex geometry tools.
- Quick and costeffective. prototyping and manufacturing.
- Energy conscious manufacturing.